


CENTRAL PROGENY TEST RESULTS 2012-2013



WITH THE SUPPORT OF





ABACUSBIO LIMITED Bridging Science & Business

.::B







0800 BEEFLAMB (0800 233 352) | WWW.BEEFLAMBNZ.COM BY FARMERS. FOR FARMERS

# SIL eSearch tools for ram buyers

# Online at www.sil.co.nz

# BreederFinder

To find ram breeder contact information

# FlockFinder

To find ram breeding flocks collecting performance information for specific traits

# RamFinder

A ram breeders tool to find individual animals with specific combinations of trait genetic merit



beef+lamb

## TABLE OF CONTENTS

| Introduction                                                                 | 1  |
|------------------------------------------------------------------------------|----|
| How to understand Central Progeny Test results                               | 3  |
| Central Progeny Test Growth Index (\$)                                       | 4  |
| Central Progeny Test Meat Value Index (\$)                                   | 5  |
| Weaning Weight eBV (kg)                                                      | 6  |
| WormFEC eBV (%)                                                              | 7  |
| Eye Muscle Area eBV (cm <sup>2</sup> )                                       | 8  |
| Dag Score eBV                                                                | 9  |
| Number of Lambs Born eBV                                                     | 10 |
| Hogget Oestrus eBV (days)                                                    | 10 |
| Fleece Weight eBV (kg)                                                       | 11 |
| Facial Eczema eBV                                                            | 11 |
| Top 20 Terminal Rams for Meat and Growth                                     | 12 |
| Top 20 Dual Purpose Rams for Meat and Growth                                 | 13 |
| Top 20 Dual Purpose Rams for Dual Purpose Indexes                            | 14 |
| Central Progeny Test on the Hill                                             | 15 |
| Has the eco-efficiency of sheep and beef farms changed in the last 20 years? | 16 |
| Animal management procedures                                                 | 18 |
| Future of the Central Progeny Test                                           | 19 |

### <u>KEY:</u>

| W =                                 | ashley Dene<br>Woodlands<br>Youkawa                                   | $ \begin{array}{r} 00 = 2\\ 01 = 2\\ 02 = 2\\ 03 = 2\\ 04 = 2\end{array} $ | 999/2000 seasor<br>000/2001 seasor<br>001/2002 seasor<br>002/2003 seasor<br>003/2004 seasor<br>004/2005 seasor<br>005/2006 seasor | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                         |
|-------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| eBV<br>EMA<br>FEC or WormFl<br>DAGS | Estimated breed<br>Eye Muscle Area<br>EC Faecal Egg Cour<br>Dag score | a NI<br>nt F\                                                              | GT21<br>LB<br>W12<br>og Oestrus                                                                                                   | Facial Eczema tolerance<br>Number of lambs born<br>Fleece weight at 12 months of age<br>Age at first oestrus |

The results presented in this booklet comprise the top terminal and dual purpose rams for each index or trait. The Central Progeny Test Growth Index is based on weaning weight and carcass weight breeding values. The Central Progeny Test Meat Value Index is based on the breeding values for weight of meat in the leg, loin and shoulder lean as measured by VIAscan<sup>®</sup>.

Information in this booklet is not to be reproduced or copied in whole or in part without written consent of Beef + Lamb New Zealand.

We make all reasonable efforts to ensure that information in this document is as accurate as possible. Statements made in this document or its contents are accurate to the best of the knowledge of Beef + Lamb New Zealand. However, Beef + Lamb New Zealand makes no representation or warranty (whether express or implied) as to the accuracy, integrity, completeness or quality of this document or its contents.

Beef + Lamb New Zealand and its respective officers, employees, agents and advisors do not accept any responsibility or liability whatsoever for any loss, claim, damage, cost or expense arising out of or as a consequence of your acting on or placing reliance upon any information, statement or opinion contained in this document.

For information relating to the Beef + Lamb New Zealand Central Progeny Test, information on the source of individual rams, or if you want Central Progeny Test results presented to a farmer's meeting, contact:

Dr Mark Young Beef + Lamb New Zealand 1/585 Wairakei Road P O Box 39-085 Harewood Christchurch 8545

Phone: (03) 357 0694 Email: mark.young@beeflambnz.com

## INTRODUCTION

### Background

Progeny tests are used to 'prove' the genetics of a ram by comparing how his progeny perform relative to progeny from other rams under the same conditions. Rams can be compared across multiple flocks when some rams are used across flocks (often called reference or link sires) to create genetic connections between flocks. However, there are other good reasons to run a progeny test at a central location, usually termed a "central progeny test". Reasons include facilitating comparisons of rams that would not normally be made in industry, and demonstrating or trialling the use of novel or expensive measurement methods.

### Objectives

The Beef + Lamb New Zealand Central Progeny Test has four objectives:

- Identify sources of high performing rams by extending and strengthening comparisons across flocks and breeding groups
- Develop genetic parameters for, and industry understanding of, novel traits
- Foster links between ram breeding groups
- Provide a genetic resource for add-on projects of value to sheep farmers and allied industries

This report addresses the first objective.

The Central Progeny Test was not set up as a breed comparison, but rather as a **ram** comparison. It has focused on identifying top genetics regardless of breed. Breed comparisons require testing many randomly selected rams per breed, with few progeny per ram. The Central Progeny Test has evaluated a relatively small number of rams, with a greater number of progeny per ram, from as many breeds as possible, to improve genetic connections within the New Zealand sheep industry.

Genetic connections between breeding groups established through the Central Progeny Test have been used in large scale evaluations performed across flocks and across breeds by Sheep Improvement Ltd (SIL). These are the "SIL-ACE" (SIL Advanced Central Evaluation; <u>www.sil.co.nz/SIL-ACE/ACE-reports.aspx</u>) evaluations. Central Progeny Test data have provided critical genetic connections needed for this.

### History of the Central Progeny Test

In 2002, the "Alliance Central Progeny Test<sup>®</sup>" was established at Woodlands, in Southland, with significant investment from the Alliance Group and the collaboration of AgResearch, SIL and AbacusBio. Terminal sire and dual purpose rams were sourced from industry and mated to Coopworth or Coopworth-cross ewes. Lambs were assessed for growth rate and carcass merit, making use of Alliance's VIAscan<sup>®</sup> technology for carcass assessment. This was repeated in 2003, with the addition of a second site at Ashley Dene in collaboration with Lincoln University. Lambs continued to be assessed for growth rate and carcass merit.

In 2004 the programme was extended to include maternal traits for dual purpose rams. Dual purpose rams were mated to sufficient ewes to generate female progeny to be retained for assessment of maternal traits. Surplus females and all male lambs were assessed for growth rate and carcass merit. Funding for the work with female progeny was provided by the then Meat & Wool New Zealand.

In 2005, a third site was established at Poukawa (Hawkes Bay) with On-Farm Research and historic liveweight data from the Poukawa Elite Lamb programme (1998 to 2004) being added to the analysis.

From 2005, matings and measurements have been carried out using the same protocols at all three sites. Beef + Lamb New Zealand has been the primary investor in the Central Progeny Test since 2005 and so it is now known as the B+LNZ Central Progeny Test. Results in the following tables are based on analysis of data from all rams evaluated to date. However, our

'aging policy' means that results are not presented for rams that are older than ten years of age and that have no progeny born in SIL-recorded flocks in the last four years, regardless of their ranking. This means that rams listed are currently, or were recently, available for use. Results are presented as two indexes (Central Progeny Test Growth Index and Central Progeny Test Meat Value Index) and individual breeding values (eBVs) for traits of interest. Three summary tables are presented at the back of the booklet, listing all relevant eBVs for the top 20 terminal rams based on the combined growth and meat indexes, the top 20 dual purpose rams based on the combined growth and meat indexes, and the top 20 dual purpose rams based on a SIL Dual Purpose Production index including merit for other traits as well.

### Changes to the presentation of results for 2012/2013 born progeny

Two new breeding value tables have been added this year, dag score eBV for both terminal sire and dual purpose rams, and hogget oestrus eBV (i.e. date of first oestrus) for dual purpose rams. The dag score breeding value presented is a SIL eBV, but hogget oestrus eBV is not. SIL has a hogget fertility eBV which requires the practice of hogget mating. The management committee decided that the Central Progeny Test would not hogget mate so as to not comprise two tooth maternal performance. Therefore, date of first oestrus based on mating with vasectomised rams is used as a proxy measurement. They are related measurements, but are not the same trait, and so we present a separate eBV.

The table listing link sires used across sites and years has been removed from the booklet this year. This is because as many as possible sires are used by artificial insemination at as many of the three sites as possible, making most, or all, rams link sires.

This is the fourth year that accuracies for breeding values are presented. They appear in parentheses beside the eBVs in the tables. The accuracy values range from 0 to 100%. The higher the accuracy, the greater the amount of data available to calculate the eBV for the ram, and the less likely the eBV would change if additional progeny are measured.

This is also the fourth year that a table summarising the dual purpose performance of dual purpose rams is presented. The top 20 rams are listed on the basis of their dual purpose performance. The table ranks rams on the SIL "Dual Purpose Production" (DPP) index, and lists the sub-indexes that make up the DPP index, and the WormFEC and facial eczema breeding values, all of which are expressed in dollar terms.

Within this booklet, SIL across-flock eBVs have been calculated from an across-flock analysis of the three Central Progeny Test flocks for weaning weight; WormFEC and fleece weight. SIL-ACE eBVs (i.e. including data outside the Central Progeny Test) are used where the eBV needs greater numbers of records to improve the accuracy of eBVs, namely for number of lambs born and facial eczema eBVs. All other eBVs are estimated using Central Progeny Test data in stand-alone analyses. These include eBVs for the traits: weights of lean in the hindleg, loin and shoulder; carcass weight; and eye muscle area.

Breeding values for the traits dressing percentage, pH, meat colour and fat colour are presented only in the tables for the top 20 dual purpose and top 20 terminal sire rams for meat and growth. They will continue to be measured so that the genetic relationships between these quality traits and growth and yield traits can be monitored.

There is a ram called "1980s Sires" in all of the dual purpose results tables. This is the average result for a group of five leading Romney rams from the early 1980s that the Central Progeny Test obtained using semen held in storage by AgResearch. The results give a clear indication that significant genetic improvement has occurred since then.

## HOW TO UNDERSTAND CENTRAL PROGENY TEST RESULTS

This booklet contains eBVs and indexes for rams used in the Alliance Central Progeny Test<sup>®</sup> and B+LNZ Central Progeny Test. A total of 260 rams have been evaluated in the Central Progeny Test to date. In addition, data from rams used in the Elite Lamb programme at Poukawa from 1998 to 2004 have been included for the evaluation of growth. However, no animals from Poukawa Elite Lamb programme are presented in the tables of results due to the aging policy.

Breeding values for the **top 25 terminal sire and top 25 dual purpose rams** are presented for each trait or index. An eBV is an estimate of the animal's true genetic worth, or the value of a parent's genes, half of which are passed on to its offspring. An eBV does not necessarily reflect the observed performance of the animal itself because the observed performance is a combination of both the animal's genes and effects of the environment it has been raised in.

Breeding values that were sourced from SIL or SIL-ACE (i.e. weaning weight, WormFEC, numbers of lambs born and facial eczema) are adjusted so the average of animals born in 1995 was zero. Central Progeny Test breeding values and indexes presented here are given as deviations from an average of zero, which means that half of the rams tested will have negative breeding values.

To give an example of how to use an eBV, if a ram has an eBV of +1.0kg for weaning weight, we would expect the progeny to be 0.5 kg heavier at weaning (the sire provides half of the genes) than the progeny of the average ram in the Central Progeny Test. Likewise, if a ram has an eBV of -1.0kg for weaning weight, we would expect his progeny to be 0.5kg lighter than the Central Progeny Test average. A negative eBV for weaning weight does not necessarily mean that the ram is poor for growth rate, e.g. many dual purpose rams do not have the high growth rates found in terminal sire breeds because they have been selected for many other traits. Thus, some of the better dual purpose rams for growth have negative eBVs simply because terminal sire rams are more likely to have high values.

A breeding index is a simple way of combining eBVs for a number of traits, with an economic weighting applied to each eBV so that the best economic response is achieved. For example, the Central Progeny Test Growth Index is a combination of the weaning weight and carcass weight eBVs.

Some Central Progeny Test eBVs and indexes differ from those produced by the SIL genetic evaluation system in several ways. The Central Progeny Test collects additional measurements that are not routinely collected in the wider industry, or are analysed in a different way to SIL because of the experimental design. For example, eye muscle area (EMA) is measured in the Central Progeny Test from tracings of the loin at slaughter and in SIL from ultrasonic eye muscle depth and width. So CPT EMA eBVs are estimated from different data to the SIL EMA eBV.

For further information on breeding values, indexes and selection, visit the SIL website (<u>www.sil.co.nz</u>). Follow the link to "Technical Information" to find the SIL User Manual and a number of technical documents.

Central Progeny Test results are also available to download on either the B+LNZ website (<u>www.beeflambnz.co.nz</u>), the SIL website (<u>www.sil.co.nz</u>) or the Alliance Group website (<u>www.alliance.co.nz</u>).

## CENTRAL PROGENY TEST GROWTH INDEX\* (\$)

## Terminal:

## Range: -\$1.11 to \$4.06

| TAG     | Flock                        | Breed         | Sites       | Progeny | Growth Index | Rank |
|---------|------------------------------|---------------|-------------|---------|--------------|------|
| 241/04  | Ohio                         | Poll Dorset   | A08         | 34      | \$4.06       | 1    |
| 296/05  | Waikite / Esselmont & Tamlet | Texel         | A09         | 31      | \$3.68       | 2    |
| 231/08  | Goldstream                   | Suffolk       | A10         | 42      | \$3.63       | 3    |
| 570/06  | MegaMeat Glengarry           | Poll Dorset   | P08         | 83      | \$3.38       | 4    |
| 447/03  | Blackdale                    | Texel         | P06         | 37      | \$3.34       | 5    |
| 499/08  | Arngibbon                    | Poll Dorset   | A11         | 36      | \$3.19       | 6    |
| 17/02   | Tyanee                       | Suffolk       | P06         | 96      | \$3.14       | 7    |
| 21/07   | Castlerock & Takitimu        | Poll Dorset   | A12 W12     | 32      | \$2.90       | 8    |
| 430/03  | Glengarry                    | Poll Dorset   | A05 P05 W05 | 117     | \$2.86       | 9    |
| 25/99   | Tyanee                       | Suffolk       | Link sire   | 799     | \$2.77       | 10   |
| 341/05  | Premier Suffolk              | Suffolk       | W09         | 37      | \$2.76       | 11   |
| 299/01  | Ohio                         | Poll Dorset   | A04         | 34      | \$2.72       | 12   |
| J20/10  | Inver                        | South Suffolk | A12 W12     | 60      | \$2.58       | 13   |
| 33/04   | Myola                        | South Suffolk | P06         | 52      | \$2.52       | 14   |
| 402/07  | MegaMeat Glengarry           | Poll Dorset   | P09         | 106     | \$2.51       | 15   |
| 4208/06 | Rissington Awapai            | Primera       | P10         | 50      | \$2.48       | 16   |
| 10/10   | Charollais Sheep NZ          | Charollais    | A12 W12     | 51      | \$2.46       | 17   |
| 275/04  | Goldstream                   | Suffolk       | A07         | 54      | \$2.32       | 18   |
| 81/06   | South Suffolk NZ Myola       | South Suffolk | W11         | 50      | \$2.30       | 19   |
| 1010/03 | Punchbowl                    | Suffolk       | W07         | 34      | \$2.25       | 20   |
| 867/06  | Adelong                      | Poll Dorset   | A10         | 40      | \$2.24       | 21   |
| 48/05   | Premier Suffolk              | Suffolk       | W08         | 38      | \$2.20       | 22   |
| 486/08  | Landcorp Kepler              | Lamb Supreme  | W10         | 23      | \$2.16       | 23   |
| 543/07  | Paki-iti                     | Suffolk       | P11         | 96      | \$2.14       | 24   |
| 61/04   | Twin Farm                    | Suffolk       | W06         | 31      | \$1.99       | 25   |

## **Dual Purpose:**

## Range: -\$3.36 to \$3.15

|          |                    |            |         |         | 3            |      |  |
|----------|--------------------|------------|---------|---------|--------------|------|--|
| TAG      | Flock              | Breed      | Sites   | Progeny | Growth Index | Rank |  |
| D110/04  | Blackdale          | Textra     | W07     | 39      | \$3.15       | 1    |  |
| 349/10   | The Gree           | Greeline   | A12 W12 | 18      | \$2.73       | 2    |  |
| 279/07   | Cairnlea           | Coopworth  | A10     | 25      | \$2.39       | 3    |  |
| 187/09   | Twin Farm          | TEFRom     | W11     | 47      | \$1.79       | 4    |  |
| 626/08   | Blackdale          | Texel      | W10     | 27      | \$1.60       | 5    |  |
| 409/06   | Blythburn          | Romney     | W09     | 38      | \$1.20       | 6    |  |
| 742/04   | Cairnlea           | Coopworth  | W07     | 29      | \$1.03       | 7    |  |
| 50394/06 | Kelso              | Kelso      | A08 W09 | 51      | \$1.02       | 8    |  |
| 1233/02  | SRDG               | Romney     | W08     | 14      | \$0.80       | 9    |  |
| 23253/05 | Longdowns, SIL 916 | Composite  | W08     | 23      | \$0.78       | 10   |  |
| 777/05   | Tamlet             | Coopworth  | W08     | 36      | \$0.75       | 11   |  |
| 245/04   | Tamlet             | Coopworth  | W09     | 23      | \$0.67       | 12   |  |
| 232/01   | TRIGG              | Romney     | W03     | 21      | \$0.54       | 13   |  |
| 1645/07  | The Gree           | Greeline   | W10     | 37      | \$0.51       | 14   |  |
| 542/04   | Hazeldale          | Perendale  | W06     | 29      | \$0.45       | 15   |  |
| HG552/02 | Clifton            | Corriedale | A05     | 48      | \$0.44       | 16   |  |
| 301/04   | Hazeldale          | Perendale  | A08     | 21      | \$0.43       | 17   |  |
| 2247/04  | Rosedale           | Growbulk   | W07     | 35      | \$0.29       | 18   |  |
| 50177/09 | Kelso              | Kelso      | P11     | 43      | \$0.23       | 19   |  |
| 3091/08  | Rosedale           | Growbulk   | A11     | 25      | \$0.05       | 20   |  |
| 358/04   | MNCC               | Coopworth  | P07     | 43      | \$0.02       | 21   |  |
| 97/02    | Raywell            | Borderdale | A03 A04 | 48      | -\$0.04      | 22   |  |
| 1227/06  | Ngaputahi          | Growbulk   | P09 P10 | 119     | -\$0.04      | 23   |  |
| 627/01   | TRIGG              | Romney     | A06     | 73      | -\$0.06      | 24   |  |
| 7180/08  | Landcorp Waihora   | Romney     | W10     | 30      | -\$0.08      | 25   |  |
| 5 sires  | 1980s sires        | Romney     | W07     | 18      | -\$2.85      | 94   |  |
|          |                    |            |         |         |              |      |  |

\*This index is a terminal sire growth index based on weaning and carcass weight breeding values

## **CENTRAL PROGENY TEST MEAT VALUE INDEX\* (\$)**

## Terminal:

## Range: -\$2.30 to \$5.43

| TAG      | Flock                            | Breed                 | Sites   | Progeny | Meat Value Index | Rank |
|----------|----------------------------------|-----------------------|---------|---------|------------------|------|
| 530/05   | Grasmere                         | Texel                 | P08     | 39      | \$5.43           | 1    |
| 642/09   | Premier Texel                    | Texel                 | P11     | 46      | \$3.58           | 2    |
| 141/04   | Crest                            | Texel                 | W10     | 32      | \$3.39           | 3    |
| 914/08   | Southern Texel Breeders<br>Group | Texel                 | W11     | 47      | \$3.04           | 4    |
| 1668/08  | Mt Linton                        | Texel                 | A12 W12 | 46      | \$3.02           | 5    |
| 207/09   | Kowhai Glen                      | Texel                 | W12     | 59      | \$2.99           | 6    |
| 1662/09  | Focus Genetics Lamb<br>Supreme   | Lamb Supreme          | A12 W12 | 41      | \$2.97           | 7    |
| 294/10   | Premier Suftex Group             | Suftex                | A12 W12 | 46      | \$2.82           | 8    |
| 110/03   | Murray Downs                     | Texel                 | W05     | 37      | \$2.73           | 9    |
| 275/04   | Goldstream                       | Suffolk               | A07     | 54      | \$2.69           | 10   |
| 323/07   | Tamlet                           | Texel                 | P12 W12 | 79      | \$2.35           | 11   |
| TB126/08 | The Burn                         | Texel                 | A11     | 33      | \$2.31           | 12   |
| 101/03   | Landover                         | Texel                 | W07     | 22      | \$2.29           | 13   |
| 114/03   | Landcorp Kepler                  | Lamb Supreme          | A05     | 33      | \$2.22           | 14   |
| Y302/07  | Waterton                         | Suffolk               | A12 W12 | 48      | \$2.15           | 15   |
| 52/04    | Mount Linton                     | Suftex                | W06     | 34      | \$2.11           | 16   |
| 299/01   | Ohio                             | Poll Dorset           | A04     | 34      | \$2.09           | 17   |
| 486/08   | Landcorp Kepler                  | Lamb Supreme          | W10     | 23      | \$2.07           | 18   |
| 44/02    | WTD                              | Texel                 | P05     | 50      | \$1.97           | 19   |
| 1296/03  | Mount Linton                     | Texel Cross           | W05     | 41      | \$1.93           | 20   |
| 105/05   | Fairlea                          | Texel                 | P10     | 51      | \$1.82           | 21   |
| 570/06   | MegaMeat Glengarry               | Poll Dorset           | P08     | 83      | \$1.79           | 22   |
| 296/05   | Waikite / Esselmont &<br>Tamlet  | Texel                 | A09     | 31      | \$1.77           | 23   |
| 63/08    | Longfield                        | SAMM (Meat<br>Merino) | A10     | 53      | \$1.66           | 24   |
| 89/05    | South Suffolk Breeders           | South Suffolk         | A08     | 30      | \$1.57           | 25   |

## Dual Purpose:

## Range: -\$2.78 to \$3.46

| TAG      | Flock              | Breed      | Sites   | Progeny | Meat Value Index | Rank |
|----------|--------------------|------------|---------|---------|------------------|------|
| D110/04  | Blackdale          | Textra     | W07     | 39      | \$3.46           | 1    |
| 50394/06 | Kelso              | Kelso      | A08 W09 | 51      | \$2.55           | 2    |
| 626/08   | Blackdale          | Texel      | W10     | 27      | \$2.31           | 3    |
| 66/08    | Brenley            | Texel      | A12 W12 | 30      | \$2.17           | 4    |
| 1645/07  | The Gree           | Greeline   | W10     | 37      | \$1.80           | 5    |
| 50177/09 | Kelso              | Kelso      | P11     | 43      | \$1.79           | 6    |
| 187/09   | Twin Farm          | TEFRom     | W11     | 47      | \$1.77           | 7    |
| 3091/08  | Rosedale           | Growbulk   | A11     | 25      | \$1.39           | 8    |
| 406/06   | MNCC               | Coopworth  | P10     | 39      | \$1.23           | 9    |
| 386/03   | Rene               | Perendale  | A07     | 33      | \$1.23           | 10   |
| 569/07   | Longview           | Perendale  | P09     | 84      | \$1.17           | 11   |
| 4203/02  | Kelso              | Kelso      | P06     | 39      | \$1.17           | 12   |
| 301/04   | Hazeldale          | Perendale  | A08     | 21      | \$1.07           | 13   |
| 198/09   | SRDG               | Romney     | W11     | 35      | \$1.07           | 14   |
| 431/04   | Twin Farm          | TEFRom     | W07     | 23      | \$0.91           | 15   |
| 88/02    | TRIGG              | Romney     | W05     | 26      | \$0.82           | 16   |
| 23253/05 | Longdowns, SIL 916 | Composite  | W08     | 23      | \$0.76           | 17   |
| 401/05   | Hazeldale          | Perendale  | W08     | 39      | \$0.60           | 18   |
| 179/07   | Wattlebank         | Corriedale | A09     | 34      | \$0.54           | 19   |
| 358/04   | MNCC               | Coopworth  | P07     | 43      | \$0.51           | 20   |
| 774/02   | Flockton           | Perendale  | A04     | 37      | \$0.40           | 21   |
| 1227/06  | Ngaputahi          | Growbulk   | P09 P10 | 119     | \$0.40           | 22   |
| 132/01   | Kelso              | Kelso      | W03     | 31      | \$0.35           | 23   |
| 544/07   | Lincoln            | Coopworth  | W11     | 45      | \$0.33           | 24   |
| 574/06   | Kylemore           | Perendale  | A08     | 21      | \$0.31           | 25   |
| 5 sires  | 1980s sires        | Romney     | W07     | 18      | -\$0.97          | 62   |

\*The relative value for meat in the loin was 4x that of meat in the shoulder and 2x that of meat in hindleg

## WEANING WEIGHT EBV\* (KG)

## Terminal:

## Range: -1.15 to 4.95

|         |                                 |               |             |         | -             |      |
|---------|---------------------------------|---------------|-------------|---------|---------------|------|
| TAG     | Flock                           | Breed         | Sites       | Progeny | WWT eBV (Acc) | Rank |
| 17/02   | Tyanee                          | Suffolk       | P06         | 106     | 4.95 (88)     | 1    |
| 296/05  | Waikite / Esselmont &<br>Tamlet | Texel         | A09         | 32      | 4.04 (75)     | 2    |
| 447/03  | Blackdale                       | Texel         | P06         | 43      | 3.90 (80)     | 3    |
| 231/08  | Goldstream                      | Suffolk       | A10         | 41      | 3.88 (80)     | 4    |
| 25/99   | Tyanee                          | Suffolk       | Link Sire   | 860     | 3.61 (99)     | 5    |
| 33/04   | Myola                           | South Suffolk | P06         | 60      | 3.57 (84)     | 6    |
| 241/04  | Ohio                            | Poll Dorset   | A08         | 37      | 3.55 (78)     | 7    |
| 341/05  | Premier Suffolk                 | Suffolk       | W09         | 37      | 3.51 (78)     | 8    |
| 543/07  | Paki-iti                        | Suffolk       | P11         | 98      | 3.44 (79)     | 9    |
| 10/10   | Charollais Sheep NZ             | Charollais    | A12 W12     | 53      | 3.42 (84)     | 10   |
| 570/06  | MegaMeat Glengarry              | Poll Dorset   | P08         | 98      | 3.34 (88)     | 11   |
| 430/03  | Glengarry                       | Poll Dorset   | A05 P05 W05 | 126     | 3.24 (91)     | 12   |
| 402/07  | MegaMeat Glengarry              | Poll Dorset   | P09         | 113     | 3.06 (90)     | 13   |
| 499/08  | Arngibbon                       | Poll Dorset   | A11         | 35      | 3.00 (77)     | 14   |
| 1010/03 | Punchbowl                       | Suffolk       | W07         | 34      | 2.98 (77)     | 15=  |
| 21/07   | Castlerock & Takitimu           | Poll Dorset   | A12 W12     | 33      | 2.98 (77)     | 15=  |
| 867/06  | Adelong                         | Poll Dorset   | A10         | 34      | 2.85 (77)     | 17   |
| J20/10  | Inver                           | South Suffolk | A12 W12     | 60      | 2.80 (85)     | 18   |
| 169/02  | Ohio                            | Poll Dorset   | W06         | 37      | 2.71 (78)     | 19   |
| 275/04  | Goldstream                      | Suffolk       | A07         | 53      | 2.52 (81)     | 20   |
| 48/05   | Premier Suffolk                 | Suffolk       | W08         | 39      | 2.45 (79)     | 21   |
| 130/05  | Belview                         | Dorset Down   | A07         | 69      | 2.43 (84)     | 22   |
| 105/05  | Fairlea                         | Texel         | P10         | 56      | 2.32 (84)     | 23   |
| 486/08  | Landcorp Kepler                 | Lamb Supreme  | W10         | 24      | 2.29 (72)     | 24   |
| 80/03   | Silverhope                      | Poll Dorset   | P06         | 51      | 2.24 (82)     | 25   |

## **Dual Purpose:**

Range: -3.97 to 3.73

| TAG      | Flock              | Breed      | Sites   | Progeny | WWT eBV (Acc) | Rank |
|----------|--------------------|------------|---------|---------|---------------|------|
| 349/10   | The Gree           | Greeline   | A12 W12 | 53      | 3.73 (84)     | 1    |
| 279/07   | Cairnlea           | Coopworth  | A10     | 46      | 3.60 (82)     | 2    |
| D110/04  | Blackdale          | Textra     | W07     | 85      | 3.50 (89)     | 3    |
| 187/09   | Twin Farm          | TEFRom     | W11     | 96      | 3.19 (89)     | 4    |
| 409/06   | Blythburn          | Romney     | W09     | 69      | 2.05 (87)     | 5    |
| 742/04   | Cairnlea           | Coopworth  | W07     | 79      | 1.93 (89)     | 6    |
| 626/08   | Blackdale          | Texel      | W10     | 62      | 1.75 (86)     | 7    |
| 1233/02  | SRDG               | Romney     | W08     | 34      | 1.53 (81)     | 8    |
| 232/01   | TRIGG              | Romney     | W03     | 21      | 1.31 (71)     | 9    |
| 50177/09 | Kelso              | Kelso      | P11     | 117     | 1.27 (79)     | 10   |
| 245/04   | Tamlet             | Coopworth  | W09     | 70      | 1.26 (87)     | 11   |
| HG552/02 | Clifton            | Corriedale | A05     | 123     | 1.24 (90)     | 12   |
| 50394/06 | Kelso              | Kelso      | A08 W09 | 109     | 1.18 (91)     | 13   |
| 23253/05 | Longdowns, SIL 916 | Composite  | W08     | 70      | 1.11 (88)     | 14   |
| 833/02   | Tamlet             | Coopworth  | W05 W06 | 133     | 0.96 (92)     | 15   |
| 542/04   | Hazeldale          | Perendale  | W06     | 68      | 0.87 (87)     | 16   |
| 97/02    | Raywell            | Borderdale | A03 A04 | 79      | 0.75 (88)     | 17   |
| 2247/04  | Rosedale           | Growbulk   | W07     | 74      | 0.74 (88)     | 18=  |
| 1645/07  | The Gree           | Greeline   | W10     | 97      | 0.74 (90)     | 18=  |
| D611/04  | Glenovis           | Corriedale | A07     | 95      | 0.50 (88)     | 20   |
| 512/05   | Kamahi             | Perendale  | W07     | 28      | 0.46 (79)     | 21   |
| 777/05   | Tamlet             | Coopworth  | W08     | 80      | 0.43 (88)     | 22   |
| 627/01   | TRIGG              | Romney     | A06     | 127     | 0.25 (91)     | 23   |
| 32/05    | TRIGG              | Romney     | W10     | 64      | 0.20 (87)     | 24   |
| 358/04   | MNCC               | Coopworth  | P07     | 99      | 0.18 (90)     | 25   |
| 5 sires  | 1980s sires        | Romney     | W07     | 32      | -3.65 (80)    | 97   |
|          |                    |            |         |         |               |      |

\*SIL eBV. The average weaning weight was 29.7kg

## WORMFEC EBV\* (%)

## Terminal:

## Range: 96.6% to -30.8%

| TAG      | Flock               | Breed                 | Sites     | Progeny | WormFEC eBV (Acc) | Rank |
|----------|---------------------|-----------------------|-----------|---------|-------------------|------|
| 533/11   | Longdowns, SIL 746  | Composite             | A12       | 14      | -30.8 (61)        | 1    |
| 44/02    | WTD                 | Texel                 | P05       | 14      | -30.8 (58)        | 2    |
| Y302/07  | Waterton            | Suffolk               | A12 W12   | 22      | -29.3 (69)        | 3    |
| 10/10    | Charollais Sheep NZ | Charollais            | A12 W12   | 27      | -26.1 (72)        | 4    |
| 3/04     | Egilshay            | Texel                 | A08       | 32      | -23.7 (72)        | 5    |
| 167/02   | MEBA                | Texel                 | W04       | 16      | -23.5 (72)        | 6    |
| 9/03     | Pahiwi              | Suffolk               | P05       | 15      | -21.4 (61)        | 7    |
| 110/03   | Murray Downs        | Texel                 | W05       | 16      | -20.6 (60)        | 8    |
| 49/05    | MegaMeat            | Poll Dorset           | P07       | 16      | -17.4 (61)        | 9    |
| 19/03    | Tasvic Downs        | Southdown             | P05       | 15      | -17.1 (59)        | 10   |
| TB126/08 | The Burn            | Texel                 | A11       | 15      | -17.1 (62)        | 11   |
| 499/08   | Arngibbon           | Poll Dorset           | A11       | 16      | -17.0 (63)        | 12   |
| 252/05   | Brandes Burton      | Texel                 | W09       | 14      | -16.7 (58)        | 13   |
| 24/07    | Punchbowl           | Suffolk               | W10       | 16      | -16.4 (61)        | 14   |
| 65/03    | Pahiwi              | Suffolk               | A06       | 36      | -16.1 (74)        | 15   |
| 63/08    | Longfield           | SAMM (Meat<br>Merino) | A10       | 16      | -15.5 (62)        | 16   |
| 6/09     | Megameat Glengarry  | Poll Dorset           | P11       | 16      | -11.7 (57)        | 17   |
| 236/07   | Pahiwi              | Suffolk               | P09       | 15      | -11.5 (63)        | 18   |
| 62/02    | Silverstream        | Dorset Down           | W05       | 16      | -11.1 (60)        | 19   |
| 4208/06  | Rissington Awapai   | Primera               | P10       | 15      | -11.0 (58)        | 20   |
| 18/02    | Brandes Burton      | Texel                 | A07       | 25      | -11.0 (68)        | 21   |
| 127/05   | Douglas Downs       | Poll Dorset           | W07       | 16      | -10.9 (62)        | 22   |
| 25/99    | Tyanee              | Suffolk               | Link sire | 231     | -10.3 (94)        | 23   |
| 78/02    | Lincoln             | Dorset Down           | W04       | 16      | -8.5 (59)         | 24   |
| 48/05    | Premier Suffolk     | Suffolk               | W08       | 16      | -8.0 (61)         | 25   |

## **Dual Purpose:**

## Range: 104.66% to -51.9%

| TAG      | Flock            | Breed      | Sites   | Progeny | WormFEC eBV (Acc) | Rank |
|----------|------------------|------------|---------|---------|-------------------|------|
| 386/03   | Rene             | Perendale  | A07     | 25      | -51.9 (76)        | 1    |
| 722/03   | Rosemains        | Perendale  | W05     | 16      | -51.2 (75)        | 2    |
| 5 sires  | 1980s sires      | Romney     | W07     | 16      | -45.1 (70)        | 3    |
| 198/09   | SRDG             | Romney     | W11     | 16      | -44.7 (64)        | 4    |
| 649/01   | ARDG             | Romney     | P06     | 8       | -36.2 (60)        | 5    |
| 4203/02  | Kelso            | Kelso      | P06     | 8       | -35.6 (57)        | 6    |
| 1035/02  | Newhaven         | Perendale  | W04     | 16      | -34.8 (73)        | 7    |
| JL1695/1 | WRIG             | Romney     | P05     | 13      | -34.5 (57)        | 8    |
| 1617/04  | Awareka          | Romney     | W07     | 16      | -32.0 (77)        | 9    |
| 348/06   | Sponsored Romney | Romney     | A08     | 58      | -31.8 (81)        | 10   |
| 77/09    | Ashgrove         | Coopworth  | A12 W12 | 32      | -30.0 (75)        | 11   |
| 347/05   | ARDG             | Romney     | P11     | 15      | -28.8 (51)        | 12   |
| 300/03   | MNCC             | Coopworth  | W05     | 16      | -27.7 (74)        | 13   |
| 132/01   | Kelso            | Kelso      | W03     | 16      | -25.7 (65)        | 14   |
| 574/06   | Kylemore         | Perendale  | A08     | 28      | -25.6 (74)        | 15   |
| 626/08   | Blackdale        | Texel      | W10     | 16      | -25.5 (65)        | 16   |
| 50394/06 | Kelso            | Kelso      | A08 W09 | 37      | -25.2 (80)        | 17   |
| 84/04    | ARDG Elite       | Romney     | P07     | 14      | -24.4 (73)        | 18   |
| 50177/09 | Kelso            | Kelso      | P11     | 14      | -24.3 (50)        | 19   |
| 127/06   | Avalon           | Perendale  | W10     | 17      | -22.8 (65)        | 20   |
| 147/01   | Tresco           | Romney     | W05     | 17      | -22.6 (70)        | 21   |
| 547/02   | Alpha Genetics   | Romney     | W09     | 13      | -22.2 (62)        | 22   |
| 279/07   | Cairnlea         | Coopworth  | A10     | 21      | -20.9 (70)        | 23   |
| 179/07   | Wattlebank       | Corriedale | A09     | 27      | -18.8 (75)        | 24   |
| 140/09   | MNCC             | Coopworth  | A12 W12 | 42      | -18.7 (79)        | 25   |

\*SIL eBV. WormFEC breeding values are expressed as a percentage reduction in eggs shed.

## EYE MUSCLE AREA EBV\* (cm<sup>2</sup>)

## Terminal:

## Range: -1.44 to 3.27

|          |                                  |                    |             |         | -            |      |
|----------|----------------------------------|--------------------|-------------|---------|--------------|------|
| TAG      | Flock                            | Breed              | Sites       | Progeny | EMA eBV(Acc) | Rank |
| 299/01   | Ohio                             | Poll Dorset        | A04         | 34      | 3.27 (91)    | 1    |
| 114/03   | Landcorp Kepler                  | Lamb Supreme       | A05         | 33      | 3.19 (91)    | 2    |
| 2002/02  | Mount Linton                     | Texel Cross        | A04         | 34      | 2.70 (91)    | 3    |
| 570/06   | MegaMeat Glengarry               | Poll Dorset        | P08         | 83      | 2.67 (94)    | 4    |
| 530/05   | Grasmere                         | Texel              | P08         | 39      | 2.63 (90)    | 5    |
| 323/07   | Tamlet                           | Texel              | P12 W12     | 79      | 2.61 (94)    | 6    |
| 1694/05  | Landcorp Kepler                  | Lamb Supreme       | P09         | 28      | 2.56 (89)    | 7    |
| 91892/05 | Kelso                            | Kelso Ranger       | P08         | 52      | 2.50 (92)    | 8    |
| 34/06    | Southern Poll Dorset             | Poll Dorset        | W08         | 50      | 2.42 (91)    | 9    |
| 127/05   | Douglas Downs                    | Poll Dorset        | W07         | 32      | 2.37 (88)    | 10   |
| 141/04   | Crest                            | Texel              | W10         | 32      | 2.36 (90)    | 11   |
| 101/08   | Longdowns, SIL 746               | Composite          | W11         | 51      | 2.32 (92)    | 12   |
| 486/08   | Landcorp Kepler                  | Lamb Supreme       | W10         | 23      | 2.14 (86)    | 13   |
| 914/08   | Southern Texel Breeders<br>Group | Texel              | W11         | 47      | 2.12 (92)    | 14   |
| 65/03    | Pahiwi                           | Suffolk            | A06         | 53      | 2.06 (93)    | 15   |
| 642/09   | Premier Texel                    | Texel              | P11         | 46      | 2.05 (92)    | 16   |
| 1344/09  | Mount Linton                     | <b>Texel Cross</b> | W11         | 40      | 1.99 (91)    | 17   |
| 33/01    | RBL Rissington                   | Primera            | W04         | 29      | 1.96 (88)    | 18   |
| T210/04  | Wharetoa                         | Meatmaker          | W06         | 34      | 1.94 (90)    | 19   |
| 021/01   | Broken Hut                       | Texel              | A03         | 29      | 1.93 (90)    | 20   |
| 430/03   | Glengarry                        | Poll Dorset        | A05 P05 W05 | 117     | 1.88 (96)    | 21   |
| 4208/06  | Rissington Awapai                | Primera            | P10         | 50      | 1.88 (91)    | 22   |
| 3/04     | Egilshay                         | Texel              | A08         | 69      | 1.85 (94)    | 23   |
| 485/05   | Mount Linton                     | Texel/Poll Dorset  | W09         | 20      | 1.82 (85)    | 24   |
| 341/05   | Premier Suffolk                  | Suffolk            | W09         | 37      | 1.78 (90)    | 25   |

## **Dual Purpose:**

## Range: -2.46 to 2.65

| TAG      | Flock               | Breed     | Sites   | Progeny | EMA eBV (Acc) | Rank |
|----------|---------------------|-----------|---------|---------|---------------|------|
| D110/04  | Blackdale           | Textra    | W07     | 39      | 2.65 (93)     | 1    |
| 1560/03  | The Gree            | Greeline  | W06     | 25      | 2.06 (92)     | 2    |
| 626/08   | Blackdale           | Texel     | W10     | 27      | 1.90 (90)     | 3    |
| 23253/05 | Longdowns, SIL 916  | Composite | W08     | 23      | 1.41 (91)     | 4    |
| 2247/04  | Rosedale            | Growbulk  | W07     | 35      | 0.90 (92)     | 5    |
| 138/01   | Edale               | Growbulk  | A03     | 34      | 0.89 (91)     | 6    |
| 829/08   | Rangiatea           | Perendale | A10 A11 | 97      | 0.85 (95)     | 7    |
| 127/06   | Avalon              | Perendale | W10     | 15      | 0.75 (85)     | 8    |
| 70/08    | Longview Perendales | Perendale | P12     | 87      | 0.72 (92)     | 9    |
| 124/07   | Rosemains           | Perendale | W11     | 40      | 0.71 (92)     | 10   |
| 512/05   | Kamahi              | Perendale | W07     | 14      | 0.67 (86)     | 11   |
| 722/03   | Rosemains           | Perendale | W05     | 36      | 0.58 (94)     | 12   |
| 66/08    | Brenley             | Texel     | A12 W12 | 30      | 0.54 (90)     | 13   |
| 55/01    | Bonnieview          | Perendale | W05     | 20      | 0.31 (90)     | 14   |
| 357/10   | Orari Gorge Romneys | Romney    | A12 W12 | 29      | 0.29 (90)     | 15   |
| 50177/09 | Kelso               | Kelso     | P11     | 43      | 0.28 (91)     | 16   |
| 409/06   | Blythburn           | Romney    | W09     | 38      | 0.26 (92)     | 17   |
| 542/04   | Hazeldale           | Perendale | W06     | 29      | 0.18 (92)     | 18   |
| 11/01    | Little River        | Cheviot   | A03 W03 | 60      | 0.15 (94)     | 19   |
| 569/07   | Longview            | Perendale | P09     | 84      | -0.01 (95)    | 20   |
| JL1695/1 | WRIG                | Romney    | P05     | 36      | -0.01 (90)    | 21   |
| 300/03   | MNCC                | Coopworth | W05     | 27      | -0.05 (93)    | 22   |
| 415/08   | Mapari              | Perendale | A11     | 22      | -0.06 (88)    | 23   |
| 4203/02  | Kelso               | Kelso     | P06     | 39      | -0.06 (94)    | 24   |
| 401/05   | Hazeldale           | Perendale | W08     | 39      | -0.06 (93)    | 25   |
| 5 sires  | 1980s sires         | Romney    | W07     | 18      | -0.19 (87)    | 30   |

\*EMA eBV is carcass weight adjusted. The average eye muscle area was  $11.9 \text{cm}^2$ 

## DAG SCORE EBV\*

### Range: 1.26 to -1.36

| TAG     | Flock                            | Breed         | Sites       | Progeny | EMA eBV(Acc) | Rank |
|---------|----------------------------------|---------------|-------------|---------|--------------|------|
| 252/05  | Brandes Burton                   | Texel         | W09         | 25      | -1.36 (82)   | 1    |
| 486/08  | Landcorp Kepler                  | Lamb Supreme  | W10         | 23      | -1.12 (81)   | 2    |
| 26/08   | Charollais Sheep NZ              | Charollais    | W11         | 33      | -1.08 (85)   | 3    |
| 269/04  | Dorper                           | Dorper        | W08         | 45      | -1.07 (88)   | 4    |
| 1344/09 | Mount Linton                     | Texel Cross   | W11         | 43      | -1.05 (88)   | 5    |
| 81/06   | South Suffolk NZ Myola           | South Suffolk | W11         | 51      | -1.02 (89)   | 6    |
| 570/06  | MegaMeat Glengarry               | Poll Dorset   | P08         | 97      | -0.91 (92)   | 7    |
| 543/07  | Paki-iti                         | Suffolk       | P11         | 96      | -0.89 (78)   | 8    |
| 430/03  | Glengarry                        | Poll Dorset   | A05 P05 W05 | 98      | -0.79 (93)   | 9    |
| 402/07  | MegaMeat Glengarry               | Poll Dorset   | P09         | 113     | -0.76 (93)   | 10   |
| 458/02  | Landcorp Waikite                 | Texel         | A06         | 27      | -0.76 (84)   | 11   |
| 642/09  | Premier Texel                    | Texel         | P11         | 45      | -0.73 (87)   | 12   |
| 275/04  | Goldstream                       | Suffolk       | A07         | 53      | -0.73 (88)   | 13   |
| 323/07  | Tamlet                           | Texel         | P12 W12     | 78      | -0.63 (85)   | 14   |
| 61/04   | Twin Farm                        | Suffolk       | W06         | 31      | -0.61 (75)   | 15   |
| 169/02  | Ohio                             | Poll Dorset   | W06         | 37      | -0.60 (80)   | 16   |
| 17/02   | Tyanee                           | Suffolk       | P06         | 105     | -0.57 (84)   | 17   |
| 376/03  | Douglas Downs                    | Dorset Horn   | W05         | 67      | -0.54 (91)   | 18   |
| 26/08   | Douglas Downs                    | Poll Dorset   | W10         | 37      | -0.53 (86)   | 19   |
| 194/08  | Valdor                           | Suffolk       | P10         | 33      | -0.52 (82)   | 20   |
| 914/08  | Southern Texel Breeders<br>Group | Texel         | W11         | 48      | -0.52 (89)   | 21   |
| 304/08  | MegaMeat                         | Poll Dorset   | P10         | 57      | -0.51 (83)   | 22   |
| 44/02   | WTD                              | Texel         | P05         | 48      | -0.47 (83)   | 23   |
| 34/06   | Southern Poll Dorset             | Poll Dorset   | W08         | 53      | -0.47 (89)   | 24   |
| 696/07  | Premier Suftex Group             | Suftex        | W11         | 44      | -0.47 (88)   | 25   |

## Dual Purpose:

Terminal:

## Range: 1.35 to -1.52

|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flock                 | Breed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sites                                                                                                                                                                                                                                                                                                                                                                                                                                               | Progeny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EMA eBV (Acc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Blackdale             | Texel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W10                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.52 (91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Blackdale             | Textra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W07                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.40 (93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mt Guardian           | Perendale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W06                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1.03 (87)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hazeldale             | Perendale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A08                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.75 (89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SRDG                  | Romney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W11                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.72 (91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Focus Genetics Romney | Romney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A12 W12                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.66 (92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Twin Farm             | TEFRom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W03 W06                                                                                                                                                                                                                                                                                                                                                                                                                                             | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.61 (94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Kelso                 | Kelso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A08 W09                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.57 (95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| White Rock            | Corriedale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A06                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.52 (92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Brenley               | Texel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A12 W12                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.49 (92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ngaputahi             | Growbulk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P09 P10                                                                                                                                                                                                                                                                                                                                                                                                                                             | 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.47 (95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Longdowns, SIL 916    | Composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W08                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.40 (93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Kamahi                | Perendale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W07                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.40 (86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The Gree              | Greeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A12 W12                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.39 (90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MNCC                  | Coopworth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P07                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.36 (80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rosemains             | Perendale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W05                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.36 (94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The Gree              | Greeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | W10                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.34 (93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Kelso                 | Kelso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P06                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.33 (90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Rene                  | Perendale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A07                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.33 (92)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TRIGG                 | Romney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A10                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.32 (90)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Little River          | Cheviot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A03 W03                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.31 (85)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Hazeldale             | Perendale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W06                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.30 (89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TRIGG                 | Romney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W03                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.28 (80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bonnieview            | Perendale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W05                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.28 (91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Glenovis              | Corriedale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A07                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.24 (93)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1980s sires           | Romney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W07                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.67 (86)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | Blackdale<br>Blackdale<br>Blackdale<br>Mt Guardian<br>Hazeldale<br>SRDG<br>Focus Genetics Romney<br>Focus Genetics Romney<br>Kelso<br>White Rock<br>Brenley<br>Mgaputahi<br>Srenley<br>Mgaputahi<br>Comgdowns, SIL 916<br>Kamahi<br>Comgdowns, SIL 916<br>MRCC<br>Srene<br>Kamahi<br>Comgdowns, SIL 916<br>Kamahi<br>Comgdowns, SIL 916<br>Kelso<br>Comgdowns, SIL 916<br>Kamahi<br>Comgdowns, SIL 916<br>Kelso<br>Comgdowns, SIL 916<br>Kamahi<br>Comgdowns, SIL 916<br>Kelso<br>Comgdowns, SIL 916<br>Kamahi<br>Comgdowns, SIL 916<br>Kamahi<br>Comgdowns, SIL 916<br>Kamahi<br>Comgdowns, SIL 916<br>Kamahi<br>Comgdowns, SIL 916<br>Kelso<br>Comgdowns, SIL 916<br>Kamahi<br>Comgdowns, SIL 916<br>Kelso<br>Comgdowns, SIL 916<br>Kamahi<br>Comgdowns, SIL 916<br>Kelso<br>Comgdowns, SIL 916<br>Kelso<br>Comgdowns, SIL 916<br>Kelso<br>Comgdowns, SIL 916<br>Kelso<br>Comgdowns, SIL 916<br>Kamahi<br>Comgdowns, SIL 916<br>Kelso<br>Comgdowns, SIL 916 | BlackdaleTexelBlackdaleTextraMt GuardianPerendaleHazeldalePerendaleSRDGRomneyFocus Genetics RomneyRomneyFocus Genetics RomneyRomneyTwin FarmTEFRomKelsoKelsoWhite RockCorriedaleBrenleyTexelNgaputahiGrowbulkLongdowns, SIL 916CompositeKamahiPerendaleThe GreeGreelineMNCCCoopworthRosemainsPerendaleThe GreeGreelineKelsoKelsoKelsoKelsoKelsoKelsoHazeldalePerendaleTRIGGRomneyHazeldalePerendaleTRIGGRomneyBonnieviewPerendaleGlenovisCorriedale | BlackdaleTexelW10BlackdaleTextraW07Mt GuardianPerendaleW06HazeldalePerendaleA08SRDGRomneyW11Focus Genetics RomneyRomneyA12 W12Twin FarmTEFRomW03 W06KelsoKelsoA08 W09White RockCorriedaleA06BrenleyTexelA12 W12NgaputahiGrowbulkP09 P10Longdowns, SIL 916CompositeW08KamahiPerendaleW07The GreeGreelineA12 W12MNCCCoopworthP07RosemainsPerendaleW05The GreeGreelineM10KelsoKelsoP06RenePerendaleW07TRIGGRomneyA10Little RiverCheviotA03 W03HazeldalePerendaleW06TRIGGRomneyM06TRIGGRomneyM06HazeldalePerendaleW06TRIGGRomneyA10Little RiverCheviotA03 W03BonnieviewPerendaleW05GlenovisCorriedaleW05GlenovisCorriedaleA07 | BlackdaleTexelW1062BlackdaleTextraW0785Mt GuardianPerendaleW0659HazeldalePerendaleA0851SRDGRomneyW1168Focus Genetics RomneyRomneyA12 W1273Twin FarmTEFRomW03 W06114KelsoKelsoA08 W09109White RockCorriedaleA0673BrenleyTexelA12 W1274NgaputahiGrowbulkP09 P10238Longdowns, SIL 916CompositeW0869KamahiPerendaleW0728The GreeGreelineA12 W1253MNCCCoopworthP0798RosemainsPerendaleW0596The GreeGreelineA1061Little RiverCheviotA03 W0333HazeldalePerendaleW0667TRIGGRomneyA1061Little RiverCheviotA03 W0333HazeldalePerendaleW0561GlenovisCorriedaleW0561GlenovisCorriedaleA0795 | Blackdale         Texel         W10         62         -1.52 (91)           Blackdale         Textra         W07         85         -1.40 (93)           Mt Guardian         Perendale         W06         59         -1.03 (87)           Hazeldale         Perendale         A08         51         -0.75 (89)           SRDG         Romney         W11         68         -0.72 (91)           Focus Genetics Romney         Romney         A12 W12         73         -0.66 (92)           Twin Farm         TEFRom         W03 W06         114         -0.61 (94)           Kelso         Kelso         A08 W09         109         -0.57 (95)           White Rock         Corriedale         A06         73         -0.62 (92)           Brenley         Texel         A12 W12         74         -0.49 (92)           Ngaputahi         Growbulk         P09 P10         238         -0.47 (95)           Longdowns, SIL 916         Composite         W08         69         -0.40 (93)           Kamahi         Perendale         W07         28         -0.40 (93)           Kamahi         Perendale         W07         28         -0.40 (93)           MNCC         Coopwor |

\*SIL eBV. Dags are scored on a scale of 0 to 5, where 0 is for no dags and 5 is the most daggy

## NUMBER OF LAMBS BORN EBV\*

### **Dual Purpose:** TAG Flock Breed Sites **Daughters lambed** NLB eBV (Acc) W07 1617/04 Awareka Romney 167 0.54 (95) 742/04 Cairnlea Coopworth W07 162 0.50 (95) 278 214/05 TRIGG W08 0.50 (95) Romney 134/03 Hinenui Coopworth P08 223 0.42 (95) 279/07 Cairnlea Coopworth A10 53 0.40 (84) 4334/07 Landcorp Waihora Romney Link sire 194 0.39 (91) 147/01 Tresco Romney W05 235 0.38 (96) 1218/06 Hinenui Coopworth A09 156 0.38 (92) 300/03 MNCC Coopworth W05 516 0.36 (97) 480/04 View Hill Romney A09 82 0.35 (89) A08 W09 50394/06 Kelso Kelso 139 0.34 (90)

Romney

Greeline

Coopworth

Coopworth

Perendale

278/03 MNCC W06 Coopworth 80 0.24 (89) 17 4/06 Corriedale Breeder Group Corriedale A08 64 0.24 (87) 18 417/04 ARDG Romney P08 200 0.23 (93) 19 179/07 Wattlebank Corriedale A09 41 0.23 (80) 20 W08 84 777/05 Tamlet Coopworth 0.22 (91) 21= 5828/02 Landcorp Waihora Romney W04 55 0.22 (89) 21= 84/04 ARDG Elite Romney P07 71 0.22 (89) 23 34/01 Twin Farm TEFRom W03 W06 145 0.22 (93) 24 5203/04 Marlow Coopworth Link sire 438 0.21 (97) 25 5 sires 1980s sires Romney W07 11 0.00 (64) 71

P08

W06

W09

W04

W04

195

136

99

81

221

\*SIL ACE eBV. Results are for rams with at least 20 daughters with two-tooth lambing records

## HOGGET OESTRUS EBV (DAYS)

### **Dual Purpose:**

4399/06

1560/03

245/04

313/01

1035/02

Landcorp Waihora

The Gree

Tamlet

Valley

Newhaven

## Range: 12.2 to -9.6

| TAG      | Flock                    | Breed      | Sites   | Progeny | Hog Oestrus (Acc) | Rank |
|----------|--------------------------|------------|---------|---------|-------------------|------|
| 349/10   | The Gree                 | Greeline   | A12 W12 | 29      | -9.6 (70)         | 1    |
| 742/04   | Cairnlea                 | Coopworth  | W07     | 43      | -8.8 (78)         | 2    |
| 4/06     | Corriedale Breeder Group | Corriedale | A08     | 20      | -8.4 (66)         | 3    |
| 50394/06 | Kelso                    | Kelso      | A08 W09 | 49      | -7.8 (79)         | 4    |
| 77/09    | Ashgrove                 | Coopworth  | A12 W12 | 34      | -7.2 (73)         | 5    |
| 23253/05 | Longdowns, SIL 916       | Composite  | W08     | 38      | -7.1 (77)         | 6    |
| 66/08    | Brenley                  | Texel      | A12 W12 | 38      | -6.8 (75)         | 7    |
| 1645/07  | The Gree                 | Greeline   | W10     | 50      | -6.6 (78)         | 8    |
| 140/09   | MNCC                     | Coopworth  | A12 W12 | 43      | -6.0 (76)         | 9    |
| 50177/09 | Kelso                    | Kelso      | P11     | 51      | -5.7 (58)         | 10   |
| 544/07   | Lincoln                  | Coopworth  | W11     | 36      | -5.6 (73)         | 11   |
| 187/09   | Twin Farm                | TEFRom     | W11     | 38      | -5.5 (74)         | 12   |
| 4203/02  | Kelso                    | Kelso      | P06     | 40      | -4.7 (73)         | 13   |
| 406/06   | MNCC                     | Coopworth  | P10     | 36      | -4.7 (62)         | 14   |
| 34/01    | Twin Farm                | TEFRom     | W03 W06 | 46      | -4.4 (79)         | 15   |
| 7180/08  | Landcorp Waihora         | Romney     | W10     | 36      | -4.2 (74)         | 16   |
| 198/09   | SRDG                     | Romney     | W11     | 24      | -3.9 (67)         | 17   |
| 18/04    | White Rock               | Corriedale | A06     | 39      | -3.7 (73)         | 18   |
| 1560/03  | The Gree                 | Greeline   | W06     | 25      | -3.5 (72)         | 19   |
| 431/04   | Twin Farm                | TEFRom     | W07     | 32      | -3.3 (72)         | 20   |
| 1227/06  | Ngaputahi                | Growbulk   | P09 P10 | 86      | -3.2 (78)         | 21   |
| 301/04   | Hazeldale                | Perendale  | A08     | 16      | -3.1 (62)         | 22   |
| 1233/02  | SRDG                     | Romney     | W08     | 13      | -3.1 (59)         | 23   |
| 134/03   | Hinenui                  | Coopworth  | P08     | 40      | -2.7 (69)         | 24   |
| 218/02   | Waiohine                 | Romney     | P07     | 49      | -2.7 (73)         | 25   |
| 5 sires  | 1980s sires              | Romney     | W07     | 10      | 7.7 (57)          | 75   |

### Range: -0.27 to 0.54

0.30 (94)

0.29 (93)

0.29 (90)

0.28 (91)

0.24 (97)

Rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

## FLEECE WEIGHT EBV\* (KG)

## Dual Purpose:

### Range: -0.87 to 0.85

| TAG     | Flock                    | Breed      | Sites     | Progeny | FW12 eBV (Acc) | Rank |
|---------|--------------------------|------------|-----------|---------|----------------|------|
| 742/04  | Cairnlea                 | Coopworth  | W07       | 40      | 0.85 (88)      | 1    |
| 956/09  | Colhoun                  | Coopworth  | A11       | 13      | 0.82 (74)      | 2    |
| 1832/02 | Awareka                  | Romney     | W04 A04   | 74      | 0.69 (87)      | 3=   |
| 544/07  | Lincoln                  | Coopworth  | W11       | 36      | 0.69 (85)      | 3=   |
| 313/01  | Valley                   | Coopworth  | W04       | 32      | 0.60 (87)      | 5    |
| 187/09  | Twin Farm                | TEFRom     | W11       | 75      | 0.47 (86)      | 6    |
| 406/06  | MNCC                     | Coopworth  | P10       | 34      | 0.46 (78)      | 7    |
| 358/04  | MNCC                     | Coopworth  | P07       | 46      | 0.42 (85)      | 8    |
| 278/03  | MNCC                     | Coopworth  | W06       | 76      | 0.35 (86)      | 9    |
| 279/07  | Cairnlea                 | Coopworth  | A10       | 12      | 0.34 (74)      | 10   |
| 5828/02 | Landcorp Waihora         | Romney     | W04       | 42      | 0.33 (89)      | 11   |
| 348/06  | Sponsored Romney         | Romney     | A08       | 77      | 0.31 (86)      | 12   |
| 1617/04 | Awareka                  | Romney     | W07       | 36      | 0.28 (86)      | 13   |
| 4399/06 | Landcorp Waihora         | Romney     | P08       | 28      | 0.27 (82)      | 14=  |
| 218/02  | Waiohine                 | Romney     | P07       | 78      | 0.27 (86)      | 14=  |
| 5203/04 | Marlow                   | Coopworth  | Link sire | 172     | 0.26 (96)      | 16   |
| 412/06  | Anui                     | Romney     | W09       | 18      | 0.24 (79)      | 17=  |
| 245/04  | Tamlet                   | Coopworth  | W09       | 79      | 0.24 (86)      | 17=  |
| 7180/08 | Landcorp Waihora         | Romney     | W10       | 36      | 0.17 (85)      | 19   |
| 833/02  | Tamlet                   | Coopworth  | W05 W06   | 80      | 0.16 (88)      | 20   |
| 1233/02 | SRDG                     | Romney     | W08       | 15      | 0.14 (77)      | 21   |
| 4/06    | Corriedale Breeder Group | Corriedale | A08       | 21      | 0.11 (81)      | 22   |
| 1645/07 | The Gree                 | Greeline   | W10       | 50      | 0.09 (88)      | 23   |
| 4334/07 | Landcorp Waihora         | Romney     | Link sire | 82      | 0.08 (96)      | 24   |
| 512/05  | Kamahi                   | Perendale  | W07       | 13      | 0.05 (74)      | 25   |
| 5 sires | 1980s sires              | Romney     | W07       | 104     | -0.52 (73)     | 90   |

\*SIL eBV. Breeding values for fleece weight at 12 months of age. Average fleece weight was 3.11kg

## FACIAL ECZEMA EBV\*

## **Dual Purpose:**

### Range: 1.02 to -1.03

|          |                          |            |           | _       |                   |      |
|----------|--------------------------|------------|-----------|---------|-------------------|------|
| TAG      | Flock                    | Breed      | Sites     | Progeny | GGT21 eBV (Acc)   | Rank |
| 649/01   | ARDG                     | Romney     | P06       | 36      | -1.03 (90)        | 1    |
| 7180/08  | Landcorp Waihora         | Romney     | W10       | 20      | -1.01 (88)        | 2    |
| 4399/06  | Landcorp Waihora         | Romney     | P08       | 32      | <b>-0.93</b> (91) | 3    |
| 4499/09  | Landcorp Waihora         | Romney     | W11       | 26      | -0.83 (88)        | 4    |
| 1295/10  | Focus Genetics Romney    | Romney     | A12 W12   | 11      | -0.82 (82)        | 5    |
| 4334/07  | Landcorp Waihora         | Romney     | Link sire | 61      | -0.78 (93)        | 6    |
| 179/07   | Wattlebank               | Corriedale | A09       | 5       | -0.71 (61)        | 7    |
| 347/05   | ARDG                     | Romney     | P11       | 20      | -0.64 (86)        | 8    |
| 115/05   | ARDG                     | Romney     | P09       | 28      | -0.54 (86)        | 9=   |
| 77/09    | Ashgrove                 | Coopworth  | A12 W12   | 11      | -0.54 (78)        | 9=   |
| 5203/04  | Marlow                   | Coopworth  | Link sire | 63      | -0.53 (91)        | 11   |
| 214/05   | TRIGG                    | Romney     | W08       | 5       | -0.52 (61)        | 12   |
| 50394/06 | Kelso                    | Kelso      | A08 W09   | 5       | -0.49 (62)        | 13=  |
| 278/03   | MNCC                     | Coopworth  | W06       | 11      | -0.49 (82)        | 13=  |
| 722/03   | Rosemains                | Perendale  | W05       | 5       | -0.48 (66)        | 15   |
| 279/07   | Cairnlea                 | Coopworth  | A10       | 5       | -0.47 (55)        | 16   |
| 1645/07  | The Gree                 | Greeline   | W10       | 5       | -0.44 (59)        | 17   |
| 118/09   | ARDG                     | Romney     | P12       | 13      | -0.41 (79)        | 18   |
| 4/06     | Corriedale Breeder Group | Corriedale | A08       | 6       | -0.37 (63)        | 19   |
| 4203/02  | Kelso                    | Kelso      | P06       | 5       | -0.36 (56)        | 20   |
| 218/02   | Waiohine                 | Romney     | P07       | 5       | -0.35 (58)        | 21   |
| 386/03   | Rene                     | Perendale  | A07       | 5       | -0.33 (54)        | 22   |
| 6448/07  | TRIGG                    | Romney     | A10       | 5       | -0.32 (55)        | 23   |
| 415/08   | Mapari                   | Perendale  | A11       | 6       | -0.31 (60)        | 24   |

\*SIL ACE eBV. The amount of the liver enzyme GGT present after challenging progeny with sporidesmin

## **TOP 20 TERMINAL RAMS FOR MEAT AND GROWTH**

| TAG     | Flock                            | Breed        | Meat &<br>growth<br>index* (\$) | Meat<br>Value<br>Index (\$) | Growth<br>Index (\$) | WWT eBV<br>(kg) | Worm<br>FEC eBV<br>(%) | EMA eBV<br>(cm2) | Dress %<br>eBV (%) | Fat colour<br>eBV (b*) | Meat<br>colour<br>eBV (a*) | pH eBV |
|---------|----------------------------------|--------------|---------------------------------|-----------------------------|----------------------|-----------------|------------------------|------------------|--------------------|------------------------|----------------------------|--------|
| 530/05  | Grasmere                         | Texel        | 7.00                            | 5.43                        | 1.57                 | 1.03            | 0.3                    | 2.63             | 1.75               | 0.36                   | -0.11                      | -0.01  |
| 296/05  | Waikite / Esselmont &<br>Tamlet  | Texel        | 5.45                            | 1.77                        | 3.68                 | 4.04            | -6.0                   | 0.78             | 0.18               | -0.33                  | -0.10                      | 0.01   |
| 570/06  | MegaMeat Glengarry               | Poll Dorset  | 5.17                            | 1.79                        | 3.38                 | 3.34            | 33.5                   | 2.67             | 0.99               | -0.87                  | -1.13                      | -0.02  |
| 241/04  | Ohio                             | Poll Dorset  | 5.03                            | 0.98                        | 4.06                 | 3.55            | 51.9                   | 0.85             | 0.11               | 0.12                   | -0.52                      | -0.04  |
| 275/04  | Goldstream                       | Suffolk      | 5.01                            | 2.69                        | 2.32                 | 2.52            | 96.6                   | 1.73             | -1.34              | 0.53                   | 0.06                       | 0.01   |
| 299/01  | Ohio                             | Poll Dorset  | 4.81                            | 2.09                        | 2.72                 | 1.54            | 72.2                   | 3.27             | 0.47               | -1.41                  | -0.17                      | 0.00   |
| 914/08  | Southern Texel Breeders<br>Group | Texel        | 4.59                            | 3.04                        | 1.56                 | 1.67            | 48.2                   | 2.12             | 1.02               | -3.96                  | 1.43                       | -0.06  |
| 207/09  | Kowhai Glen                      | Texel        | 4.26                            | 2.99                        | 1.26                 | 1.54            | -10.1                  | 0.23             | 1.08               | 0.43                   | -0.29                      | 0.00   |
| 1662/09 | Focus Genetics Lamb<br>Supreme   | Lamb Supreme | 4.23                            | 2.97                        | 1.26                 | 0.97            | 17.3                   | -0.32            | 0.68               | -0.14                  | -0.60                      | 0.02   |
| 486/08  | Landcorp Kepler                  | Lamb Supreme | 4.23                            | 2.07                        | 2.16                 | 2.29            | 19.1                   | 2.14             | 0.89               | -1.51                  | -1.23                      | 0.03   |
| 1668/08 | Mt Linton                        | Texel        | 4.07                            | 3.02                        | 1.05                 | 1.19            | 7.4                    | 0.56             | 0.82               | -0.36                  | 0.52                       | 0.05   |
| 141/04  | Crest                            | Texel        | 4.04                            | 3.39                        | 0.64                 | -0.01           | 33.6                   | 2.36             | 1.36               | -1.46                  | -0.06                      | 0.01   |
| 499/08  | Arngibbon                        | Poll Dorset  | 3.97                            | 0.78                        | 3.19                 | 3.00            | -17.0                  | -1.09            | -0.45              | -0.02                  | 0.41                       | 0.01   |
| 447/03  | Blackdale                        | Texel        | 3.95                            | 0.61                        | 3.34                 | 3.90            | -0.6                   | 1.31             | 0.32               | -3.88                  | -0.15                      | 0.00   |
| 25/99   | Tyanee                           | Suffolk      | 3.91                            | 1.15                        | 2.77                 | 3.61            | -10.3                  | 0.35             | -0.99              | 2.11                   | -0.71                      | 0.03   |
| 341/05  | Premier Suffolk                  | Suffolk      | 3.79                            | 1.03                        | 2.76                 | 3.51            | 9.2                    | 1.78             | 0.05               | -0.50                  | 0.17                       | 0.01   |
| 231/08  | Goldstream                       | Suffolk      | 3.69                            | 0.06                        | 3.63                 | 3.88            | -0.7                   | -0.94            | -0.94              | 0.93                   | -0.06                      | 0.07   |
| 48/05   | Premier Suffolk                  | Suffolk      | 3.67                            | 1.47                        | 2.20                 | 2.45            | -8.0                   | 0.02             | 0.18               | -0.16                  | -0.27                      | 0.00   |
| 10/10   | Charollais Sheep NZ              | Charollais   | 3.63                            | 1.18                        | 2.46                 | 3.42            | -26.1                  | -1.31            | -0.98              | 0.01                   | -0.01                      | 0.04   |
| 323/07  | Tamlet                           | Texel        | 3.56                            | 2.35                        | 1.21                 | 0.16            | 8.1                    | 2.61             | 2.47               | -1.51                  | -0.25                      | -0.03  |

\* The combined Growth and Meat Value indexes, calculated by adding together the two individual indexes. Positive (i.e. higher) values are better for all traits except WormFEC, fat colour and pH eBV where a negative (i.e. lower) value is better.

## **TOP 20 DUAL PURPOSE RAMS FOR MEAT AND GROWTH**

| TAG      | Flock                 | Breed     | Meat &<br>growth<br>Index* (\$) | Meat<br>Value<br>Index (\$) | Growth<br>Index (\$) | WWT eBV<br>(kg) | Worm<br>FEC<br>eBV (%) | EMA<br>eBV<br>(cm2) | Dress %<br>eBV (%) | Fat colour<br>eBV (b*) | Meat colour<br>eBV (a*) | pH eBV | NLB eBV | FW12<br>eBV (kg) | FE eBV |
|----------|-----------------------|-----------|---------------------------------|-----------------------------|----------------------|-----------------|------------------------|---------------------|--------------------|------------------------|-------------------------|--------|---------|------------------|--------|
| D110/04  | Blackdale             | Textra    | 6.62                            | 3.46                        | 3.15                 | 3.50            | -18.0                  | 2.65                | 0.72               | -1.85                  | -0.12                   | 0.01   | -0.05   | -0.78            | 0.01   |
| 626/08   | Blackdale             | Texel     | 3.91                            | 2.31                        | 1.60                 | 1.75            | -25.5                  | 1.90                | 0.48               | -1.24                  | -0.20                   | 0.01   | 0.11    | -0.09            | 0.77   |
| 50394/06 | Kelso                 | Kelso     | 3.58                            | 2.55                        | 1.02                 | 1.18            | -25.2                  | -0.84               | -0.18              | -0.54                  | -0.48                   | 0.09   | 0.34    | -0.71            | -0.49  |
| 187/09   | Twin Farm             | TEFRom    | 3.56                            | 1.77                        | 1.79                 | 3.19            | 8.4                    | -0.85               | -0.47              | -1.99                  | -0.71                   | 0.03   |         | 0.47             | -0.26  |
| 1645/07  | The Gree              | Greeline  | 2.31                            | 1.80                        | 0.51                 | 0.74            | -13.2                  | -0.23               | 0.11               | 0.20                   | -0.52                   | 0.03   | 0.12    | 0.09             | -0.44  |
| 349/10   | The Gree              | Greeline  | 2.22                            | -0.51                       | 2.73                 | 3.73            | 54.1                   | -1.51               | -0.92              | -0.82                  | -0.06                   | -0.06  |         |                  | 0.02   |
| 50177/09 | Kelso                 | Kelso     | 2.02                            | 1.79                        | 0.23                 | 1.27            | -24.3                  | 0.28                | 0.26               | -0.20                  | -0.99                   | 0.08   |         | -0.46            | 0.11   |
| 23253/05 | Longdowns,<br>SIL 916 | Composite | 1.53                            | 0.76                        | 0.78                 | 1.11            | 29.6                   | 1.41                | -0.24              | 0.92                   | -0.51                   | -0.01  | -0.11   | -0.12            | 0.09   |
| 301/04   | Hazeldale             | Perendale | 1.50                            | 1.07                        | 0.43                 | 0.15            | -13.7                  | -1.91               | -1.19              | 0.28                   | 0.03                    | -0.03  | -0.04   | -0.14            | -0.05  |
| 3091/08  | Rosedale              | Growbulk  | 1.44                            | 1.39                        | 0.05                 | -0.37           | 25.4                   | -0.14               | -0.38              | 0.46                   | 0.44                    | -0.02  |         | 0.02             | -0.17  |
| 279/07   | Cairnlea              | Coopworth | 1.38                            | -1.02                       | 2.39                 | 3.60            | -20.9                  | -0.69               | -0.34              | 1.29                   | 0.56                    | -0.04  | 0.40    | 0.34             | -0.47  |
| 409/06   | Blythburn             | Romney    | 1.06                            | -0.14                       | 1.20                 | 2.05            | 8.4                    | 0.26                | -1.17              | -0.73                  | -0.06                   | 0.03   | -0.01   | -0.06            | 0.24   |
| 66/08    | Brenley               | Texel     | 1.05                            | 2.17                        | -1.12                | -0.79           | -7.2                   | 0.54                | 1.30               | -0.57                  | -0.21                   | 0.01   |         |                  | -0.08  |
| 406/06   | MNCC                  | Coopworth | 0.96                            | 1.23                        | -0.27                | -0.10           | 8.1                    | -0.33               | -0.91              | 0.63                   | 1.03                    | -0.02  | 0.13    | 0.46             | -0.20  |
| 542/04   | Hazeldale             | Perendale | 0.65                            | 0.20                        | 0.45                 | 0.87            | 8.3                    | 0.18                | -0.70              | 1.08                   | 0.17                    | -0.01  | 0.18    | -0.48            | -0.19  |
| 358/04   | MNCC                  | Coopworth | 0.52                            | 0.51                        | 0.02                 | 0.18            | 23.0                   | -0.95               | -0.79              | 1.19                   | 1.09                    | -0.04  | 0.19    | 0.42             | -0.19  |
| 1227/06  | Ngaputahi             | Growbulk  | 0.36                            | 0.40                        | -0.04                | -0.09           | 47.4                   | -0.41               | 0.42               | -1.58                  | 1.37                    | -0.01  | -0.07   | 0.00             | 0.62   |
| 569/07   | Longview              | Perendale | 0.31                            | 1.17                        | -0.86                | -0.39           | -12.1                  | -0.01               | 0.34               | -1.68                  | 0.87                    | -0.03  | 0.06    | -0.29            | 0.10   |
| 2247/04  | Rosedale              | Growbulk  | 0.14                            | -0.15                       | 0.29                 | 0.74            | 1.1                    | 0.90                | -0.28              | 0.30                   | 0.51                    | -0.04  | 0.05    | -0.23            | 0.16   |
| 245/04   | Tamlet                | Coopworth | 0.04                            | -0.63                       | 0.67                 | 1.26            | -17.3                  | -0.43               | -0.32              | 1.22                   | 0.81                    | -0.06  | 0.29    | 0.24             | 0.48   |

\* The combined Growth and Meat Value indexes, calculated by adding together the two individual indexes. Positive (i.e. higher) values are better for all traits except WormFEC, fat colour, pH and FE eBV where a negative (i.e. lower) value is better. Rams with no values for NLB do not yet have an two-tooth daughters lambing, and missing FW12 eBV have no progeny yet assessed

## **TOP 20 DUAL PURPOSE RAMS FOR DUAL PURPOSE INDEXES\***

| TAG      | Flock                          | Breed      | Production (\$)* | Lamb growth (\$) | Adult size (\$) | Meat (\$) | Wool (\$) | Reproduction (\$) | WormFEC (\$) | Facial Eczema (\$) |
|----------|--------------------------------|------------|------------------|------------------|-----------------|-----------|-----------|-------------------|--------------|--------------------|
| 279/07   | Cairnlea                       | Coopworth  | 28.00            | 23.00            | -9.12           | -1.38     | 3.29      | 8.93              | -0.66        | 6.74               |
| 134/03   | Hinenui                        | Coopworth  | 25.12            | 12.67            | -3.88           | 1.13      | 0.32      | 9.44              | 0.72         | -4.30              |
| 742/04   | Cairnlea                       | Coopworth  | 24.03            | 16.45            | -5.79           | 0.38      | 3.53      | 11.12             | -3.76        | 1.43               |
| 1617/04  | Awareka                        | Romney     | 21.71            | 9.34             | -7.51           | 0.50      | 1.03      | 12.05             | 0.55         | 1.72               |
| 4/06     | Corriedale<br>Breeder<br>Group | Corriedale | 21.59            | 12.52            | -5.69           | 0.21      | 3.18      | 5.30              | -2.20        | 5.30               |
| 5203/04  | Marlow                         | Coopworth  | 21.03            | 15.41            | -3.34           | 0.46      | 3.15      | 4.66              | -0.97        | 7.59               |
| 300/03   | MNCC                           | Coopworth  | 20.79            | 9.03             | -3.96           | 1.56      | 1.94      | 8.12              | 0.96         | 0.00               |
| 1560/03  | The Gree                       | Greeline   | 20.66            | 12.00            | -1.20           | 1.31      | 1.03      | 6.47              | 1.23         | -14.62             |
| 245/04   | Tamlet                         | Coopworth  | 19.98            | 13.64            | -4.63           | -1.46     | 1.97      | 6.38              | 0.22         | -6.88              |
| 278/03   | MNCC                           | Coopworth  | 19.94            | 7.03             | 5.27            | -1.80     | 3.13      | 5.38              | 1.10         | 7.02               |
| 1645/07  | The Gree                       | Greeline   | 19.36            | 18.75            | -6.02           | 0.45      | 2.24      | 2.61              | -0.38        | 6.31               |
| 50394/06 | Kelso                          | Kelso      | 19.02            | 19.80            | -3.85           | -2.11     | -1.79     | 7.59              | 0.20         | 7.02               |
| 412/06   | Anui                           | Romney     | 18.70            | 10.75            | -4.01           | 0.31      | 1.74      | 3.40              | -2.30        | 1.43               |
| 1218/06  | Hinenui                        | Coopworth  | 17.85            | 16.13            | -8.61           | 0.66      | 1.02      | 8.45              | -1.41        | -1.72              |
| 214/05   | TRIGG                          | Romney     | 17.64            | 11.74            | -4.65           | -0.64     | 0.30      | 11.07             | -0.46        | 7.45               |
| 301/04   | Hazeldale                      | Perendale  | 17.42            | 13.20            | -3.92           | 1.49      | 0.98      | -0.95             | -1.90        | 0.72               |
| 480/04   | View Hill                      | Romney     | 16.99            | 11.04            | -6.54           | 1.12      | 1.72      | 7.73              | 0.47         | 2.44               |
| 457/00   | Nithdale                       | Romney     | 16.71            | 9.76             | -0.12           | -0.55     | 1.90      | 3.64              | 1.24         | -1.29              |
| 358/04   | MNCC                           | Coopworth  | 16.63            | 14.32            | -9.42           | -1.39     | 2.40      | 4.21              | -0.31        | 2.72               |
| 406/06   | MNCC                           | Coopworth  | 16.11            | 14.31            | -6.57           | -0.70     | 2.86      | 2.90              | 0.27         | 2.87               |

\* These results are the SIL Dual Purpose Production (DPP) index, and the sub-indexes that make up the DPP (<u>www.sil.co.nz</u>). The DPP does not include health traits, so WormFEC and facial eczema are listed as well. All indexes are in dollar values. Maternal traits have only been collected from daughters of dual purpose sires since 2005.

## **CENTRAL PROGENY TEST ON THE HILL**

Do rams that perform well on the flat also perform well on the hill?

This question is frequently asked, and is one which the current B+LNZ Central Progeny Test is not easily able to answer. These so called 'genotype by environment interactions' are known to exist, particularly for some disease-related traits. For example, progeny of a ram with no resistance to facial eczema (FE) may perform very well an environment where they are not exposed to FE, but are likely to perform poorly if evaluated in an environment where they are exposed to FE. Very little is known about how much other production traits are affected by genotype by environment interactions.

The three Central Progeny Test sites in the Hawkes Bay, Canterbury and Southland are all on relatively flat and low country, and one criticism of the Central Progeny Test programme is that this land class is no longer the type that the majority of sheep are now farmed. Dairy farming and dairy support have taken over much of the easier farming country and therefore a greater proportion of our sheep production now occurs on hill and hard hill country. Farmers commonly believe that rams bred to perform well on the hill will usually perform well on the flat, but that rams bred to perform well on the flat may not perform well on the hill. However, there has not been a lot of research investigating genotype by environment interactions, and certainly none with the current breeds and breed strains used in New Zealand.

Two new hill country Central Progeny Test sites have been established in order to investigate whether the ranking of rams change depending on the environment they are used. The new sites, one in the North Island and one in the South Island, have been established by Ovita using the same dual purpose rams used in the B+LNZ for the 2013 mating. Both farms are commercial properties rather than research stations and will focus on measurement of maternal traits including fertility, ewe and lamb survival and stayability or longevity.

The South Island site is "Onslow View", in the hill country immediately to the north of Millers Flat in Otago. The North Island site is "Koromiko", a Taratahi training farm located northeast of Masterton. Matings are by artificial insemination so that the same dual purpose rams are used on hill and lowland Central Progeny Test sites. DNA parentage testing and RFID tagging are being used to determine parentage for lambs and performance of individual progeny can be measured.

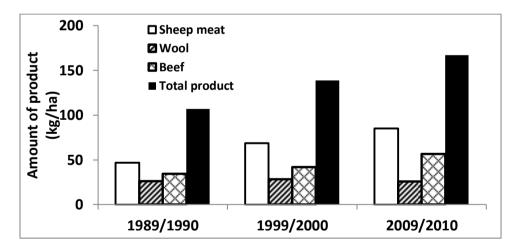
In order to evaluate the maternal performance of a ram, ewe progeny have to be produced and retained until they reach breeding age, and then their performance measured and recorded for a number of years. This means that it will be several years before any significant results are available from the hill country sites for key maternal traits.

Over a meter of snow fell at Onslow view in late June 2013 so that ewe flock has already experienced very challenging conditions.

This is important research for the sheep industry and is expected to receive a lot of interest. The extent to which ratings for genetic merit are applicable across different environments needs to be quantified before we can decide how best to deal with such effects.

# Has the eco-efficiency of sheep and beef farms changed in the last 20 years?

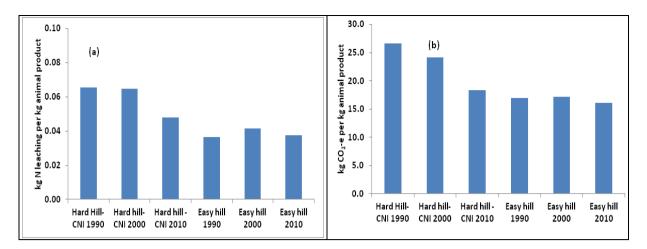
A.D. Mackay<sup>1</sup>, A.P. Rhodes<sup>2</sup>, I. Power<sup>3</sup> and M.E. Wedderburn<sup>3</sup>


<sup>1</sup>AgResearch Grasslands, Private Bag 11008, Palmerston North <sup>2</sup>PGG Wrightson Consulting, PO Box 42, Dannevirke 4942 <sup>3</sup>Technical extension officer, Ballance Agri-nutrients.

## Introduction

In New Zealand and elsewhere, debates on the level of sustainable economic development possible using natural capital stocks rarely considers the eco-efficiency (i.e. the emissions to air or water per unit product) with which natural resources are used. In a recent paper to the New Zealand Grasslands Association the changes in eco-efficiency of sheep and beef farming in New Zealand over the last 20 years were presented and discussed (Mackay *et al.*, 2012). Key messages of that paper are reproduced here.

## Approach


Changes in the eco-efficiency of the sheep and beef sector over the last 20 years were calculated for the paper by examining ratios between various inputs (e.g., livestock numbers, nutrients, etc) and outputs (e.g., saleable products, greenhouse gases (GHG), nitrate, etc). Farm modelling was carried out for three periods for each of two MAF farm types: Hard Hill Country-Central North Island (CNI) and Manawatu Easy Hill Finishing. The Overseer<sup>®</sup> nutrient budget model was used to explore the relationship between inputs and outputs from each sheep and beef system. A livestock reconciliation table was constructed from the information provided in each of the Sheep and Beef Farm Monitoring models to calculate the amount of sheep meat, wool and beef produced.



**Figure 1**: Decadal changes in sheep meat, wool and beef production per hectare from the Hard Hill-Country-Central North Island

## Findings

There has been little change in the "nominal stocking rates" in the MAF sheep and beef farm monitoring models in the last 20 years, but substantial changes in livestock performance, with lambing percentages increasing from 75% to 124% in the Hard Hill country-Gisborne sheep and beef farm system and from 93% to 134% on the Easy Hill finishing. In addition to the increased ewe fecundity, improvements have also been achieved in lamb growth rates, and slaughter weights of lambs having increased 37% from 14.5 kg to 19.9 kg over the last 20 years. This has contributed to a lift in sheep meat production in the Hard Hill country of 72% since 1989/90 (Fig.1).



**Figure 2** (a) kg N leached and (b) kg CO<sub>2</sub>-e per kg animal product (sum of the sheep meat, wool and beef) from sheep and beef farm systems since 1989/90.

Nitrate leaching losses calculated using the Overseer nutrient budgeting model for the sheep and beef systems all fell within a narrow range (7-9 kgN/ha/year). A very similar pattern emerges with GHG emissions, with little change in GHG emissions from the sheep and beef systems over time or across the farm systems.

While meat and fibre production per hectare increased, the amount of N leached per kg animal product (Fig. 2a) and  $CO_2$ -e per kg animal product (Fig. 2b) decreased from 1989 to 2000 and again between 2000 and 2010 for the Hard Hill country-CNI sheep and beef operation.

The decrease in the kilogram N leached per kilogram of meat and fibre produced reflects two factors. Firstly, more of the feed grown through the spring and summer is eaten by young growing animals that can be turned into saleable product before the autumn and winter months. Second, less live weight per unit product sold is carried into winter reducing the number of urine patches and the potential for N losses by leaching. The reduction in the kg  $CO_2$ -e per kg animal product reflects in part on the increased allocation of the total feed grown to saleable product and less to the maintenance of capital livestock.

The eco-efficiency gains obtained in the Hard Hill country-CNI farm system did not extend to include an overall reduction in N leaching or GHG emissions per hectare. This is an important point to note if there are limits being set on emissions to water in catchments. In those circumstances the absolute losses per hectare are a more meaningful measure than the use of a loss per kilogram product. While there was not an overall reduction in N leaching or GHG emissions per hectare, they have changed little since 1990.

In the Easy Hill finishing system there have been only small changes in the eco-efficiency over the last 20 years (Fig. 2), but again on the positive side little change in environmental footprint. The Easy Hill finishing system is more eco-efficient with the amount of saleable product per hectare higher and the N leached and GHG emissions per kilogram of saleable product lower than the hard hill country operation (Fig. 2).

The focus of the sheep industry on reproductive performance and higher growth rates in lambs and cattle provides a natural buffer to the increases in emissions generally associated with intensification of a livestock system. Understanding how eco-efficiency changes is more than just an academic exercise as we move to an operating environment where land is a finite resource and there are limits on emissions to the environment.

## Reference

Mackay, A.D., Rhodes, A.P., Power, I., Wedderburn, M.E. 2012. Has the eco-efficiency of sheep and beef farms changed in the last 20 years? *Proceedings of the New Zealand Grassland Association*: 74 9-14

## **ANIMAL MANAGEMENT PROCEDURES**

To date, a total of 260 sires from 22 terminal and 12 dual purpose breeds or composites have been evaluated in the B+LNZ Central Progeny Test (formerly the M&WNZ Central Progeny Test, and before that the Alliance CPT<sup>®</sup>). There are some differences in animal management across the three sites that reflect differences in geographical location and average performance of the ewe flock at each site. However, wherever possible animal management procedures are the same across sites. Following is a brief summary of management procedures applied across sites.

## Mating

The aim across the three Central Progeny Test sites is to have at least 20 progeny per sire for the evaluation of a sire's meat and growth performance for both terminal and dual purpose sires, and 25 ewe progeny retained for maternal evaluations of the dual purpose sires. Numbers of ewes allocated varies between sites due to differences in fertility in the ewe flocks. All ewes are synchronised for mating using CIDRs, whether mated naturally or by AI.

### Lambing

Flocks are split into single-bearing and multiple-bearing mobs prior to lambing. Lambs are tagged and weighed within 12 hours of birth. Sex, birth rank and rearing rank are recorded at the same time. At some sites, the smallest triplet is mothered onto a single bearing ewe.

### Docking

Lambs are vaccinated for diseases and conditions that are relevant to each site. Lambing mobs are usually joined together at docking and the grazing mob is recorded.

### Weaning

Weaning occurs at 12 weeks of age. Live weight is recorded at weaning and a faecal sample collected to measure faecal egg count. Lambs are also dag scored at this time. Lambs which remain after weaning (the first draft for slaughter occurs at weaning) are drenched with an oral anthelmintic.

## Drafting for meat and growth performance assessment

All lambs from the terminal sires are drafted for slaughter once they reach the target live weight to achieve a carcass weight of 18kg. All ram lamb progeny, plus surplus ewe lamb progeny from the dual purpose sires, are slaughtered. The first draft occurs at weaning, followed by drafts at monthly intervals thereafter. All remaining slaughter lambs are drafted at the March slaughter. Measurements collected at slaughter include the VIAscan<sup>®</sup> measurements of lean weight in the hindleg, loin and shoulder, dressing percentage, eye muscle area, meat and fat colour and meat pH.

### Ewe maternal performance assessment for dual purpose sires

Some ewe lambs from dual purpose sires are retained for evaluation of maternal traits. Date of first oestrus is recorded in hoggets and all ewe progeny are mated as a minimum as two-tooths and four-tooths (i.e. there is no culling prior to the four-tooth lambing). Number of lambs born and lamb survival are recorded at each lambing. Data from additional matings are recorded if the ewe progeny are retained in the flock, but they can be culled after the four-tooth lambing.

### Timetable of events for key dates at the three Central Progeny Test sites for 2012/2013

| Event            | Poukawa     | Ashley Dene | Woodlands    |
|------------------|-------------|-------------|--------------|
| Start of mating  | 2 March     | 28 March    | 10 April     |
| Start of lambing | 28 July     | 19 August   | 3 September  |
| Docking          | At birth    | 8 September | 29 September |
| Weaning          | 11 November | 3 December  | 10 December  |
| First draft      | 22 November | 5 December  | 12 December  |
| Second draft     | 1 February  | 16 January  | 23 January   |
| Third draft      | 19 March    | 13 February | 28 February  |

## FUTURE OF THE CENTRAL PROGENY TEST

This year promises to be exciting for Beef + Lamb New Zealand. A new partnership application has been submitted to the Ministry of Business, Innovation and Employment for a project plan that will encompass the Beef + Lamb New Zealand Central Progeny Test, Sheep Improvement Ltd and Ovita. The idea behind combining the three entities is to create a genetics hub for sheep and beef. Keep an eye on our websites for information updates about this partnership programme.

Part of the project programme is to expand the current Central Progeny Test to include measurements on sire progeny run on harder hill country (please see Page 15 for an article on "Central Progeny Test on the Hill"). As part of the Ovita project plan for this year, two new harder hill country sites linked to the B+LNZ Central Progeny Test were established on commercial properties, one near Millers Flat in Otago, and the other on one of the Taratahi Agricultural Training Institute farms near Masterton. The aims for the 'expanded' Central Progeny Test are to investigate whether sires rank differently for performance in lowland and hill environments, and to collect data on maternal ewe performance in harder country.

We want to hear your ideas as well. What do you think are priorities for sheep genetics work, or other aspects of sheep production in New Zealand? It may be that these could be incorporated into future plans or become add-on projects for the Central Progeny Test. Please take the opportunity to contact us about this using the contact details below.

## Sire entry into the Central Progeny Test

A call is made for expressions of interest to supply rams to the Central Progeny Test every November. All SIL flocks actively recording performance in New Zealand receive notification of this. Individual ram selection is left to the breeder(s), but spaces are allocated on the basis of:

- widespread use of the ram across SIL flocks with existing across flock information available
- providing stronger connections across groups of flocks to enhance validity of across-flock analyses based on Central Progeny Test flock data
- availability of meat yield performance information (e.g. ultrasonic eye muscle measurements) for the individual ram and his relatives in SIL recorded flocks

Alternatively, rams can be entered into the Central Progeny Test on a cost-recovery basis: \$5,000 per terminal sire and \$15,000 per dual purpose sire. These prices may be revised in future.

### Additional traits

The Management Committee will consider adding further traits, if they are of sufficient value to the sheep industry to justify cost of their inclusion. Currently dag score and breech/belly bareness are being recorded and will be included in future reports when enough information is available to produce reliable results.

### Add-on projects

To date the unique genetic resources of the Central Progeny Test have been used for more than 20 add-on projects. These projects will continue to be an important contribution from the Central Progeny Test to advances in the sheep industry.

### Genetic connectedness between breeding groups

Permission has been given to several breeding groups to use Central Progeny Test data to improve genetic connections between flocks in their groups. Any group wishing to use the CPT data in this way should get their SIL Across Flock Report Manager to apply to SIL for access to CPT flock data for this purpose (contact details below).

To provide comment, to get further information including the source of individual rams, or to have results presented at a farmer meeting, contact Dr Mark Young by telephone (03 357 0694) or email (<u>mark.young@beeflambnz.com</u>).

# beeflambnz.com

## World-class R&D, tools and resources for your farm We provide industry leading research, tools and resources to help you get the most value from your business.





0800 BEEFLAMB (0800 233 352) | WWW.BEEFLAMBNZ.COM BY FARMERS. FOR FARMERS